

Lecture - 3

Q.15If x, y, z are in A.P. and x, y, t are in G.P. then x, x - y, t - z are in -
(A) G.P.(B) A.P.(D) H.P.(D) A.P. and G.P. both

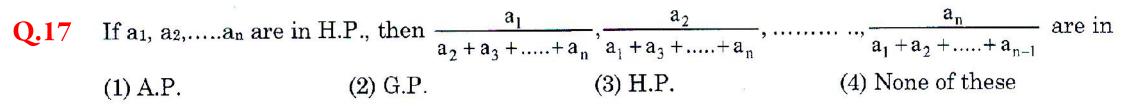
Sol.	[A]	
ſ	Proper Method	Short Trick
	x, y, z are in A.P.	Let $x = 1$, $y = 2$, $z = 3$
	$\Rightarrow 2y = x + z$	and $t = 4$
	Or $2xy = x^2 + xz$ (multiplying with x)	$x, x - y, t - z \equiv 1, -1, 1$
	$\Rightarrow \mathbf{x}^2 - 2\mathbf{x}\mathbf{y} = -\mathbf{x}\mathbf{z} \qquad \dots (1)$	are in G.P.
	x, y, t are in G.P.	
	\Rightarrow y ² = xt	
	or $(x^2 - 2xy + y^2) = -xz + xt$	
	or $(x - y)^2 = x (t - z)$	
	x, x - y, t - z are in G.P.	

Q.16 If a, b, c are in H.P. then
$$\frac{a}{b+c}$$
, $\frac{b}{c+a}$, $\frac{c}{a+b}$ will be in-
(A) A.P. (B) G.P. (C) H.P. (D) None of these

Sol. [C]
Proper Method
a, b, c are in HP

$$\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$$
 are in AP
 $\Rightarrow \frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c}$ are in AP
 $\Rightarrow \frac{a+b+c}{a}, \frac{1+\frac{c+a}{b}}{b}, 1+\frac{a+b}{c}$ are in AP
 $\Rightarrow \frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c}$ are in AP
 $\Rightarrow \frac{a}{b+c}, \frac{c+a}{b}, \frac{a+b}{c}$ are in HP.
Short Trick
Let $a = 2, b = 3, c = 6$
then $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$
 $\equiv \frac{2}{9}, \frac{3}{8}, \frac{6}{5}$
which are in H.P

P Buger 10



[C] Proper Method	Short Trick
$a_1, a_2,, a_n$ are in H.P.	Let $a_1 = 2$, $a_2 = 3$, $a_3 = 6$
$\Rightarrow \frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n}$ are in A.P.	$\frac{a_1}{a_2 + a_3} = \frac{2}{9}$
$\Rightarrow \frac{a_1 + a_2 + a_3 + \dots + a_n}{a_1}, \frac{a_1 + a_2 + a_3 + \dots + a_n}{a_2}, \dots,$	$\begin{vmatrix} \frac{a_2}{a_1 + a_3} = \frac{3}{8} \\ a_2 = \frac{3}{8} \end{vmatrix} \text{ are in H.P.}$
$\Rightarrow 1 + \frac{a_2 + a_3 + \dots + a_n}{a_1}, 1 + \frac{a_1 + a_3 + \dots + a_n}{a_2}, \dots,$	$\frac{\mathbf{a}_3}{\mathbf{a}_1 + \mathbf{a}_2} = \frac{6}{5}$
$\frac{a_1 + a_2 + \dots + a_{n-1}}{a_n} \text{ are in A.P.}$.₩
$\Rightarrow \frac{a_2 + a_3 + \ldots + a_n}{a_1}, \frac{a_1 + a_3 + \ldots + a_n}{a_2}, \ldots,$	
$\frac{a_1 + a_2 + \ldots + a_{n-1}}{a_n} \text{ are in A.P.}$	
$\Rightarrow \frac{a_1}{a_2 + a_3 + \dots + a_n}, \frac{a_2}{a_1 + a_3 + \dots + a_n}, \dots,$	
$\frac{a_n}{a_1 + a_2 + + a_{n-1}}$ are in H.P.	

Sol.

If the sum of m terms of an A.P. is the same as the sum of its n terms, then the sum of its **Q.18** (m + n) terms is -3

(4) 0 (3) 1/mn (2) - mn(1) mn

Sol.	[D]	
	Proper Method	Short Trick
	Let a be the first term and d be the common	Let $m = 2$ and $n = 3$
	difference the given AP then	$-2, -1, 0, 1, 2 \dots$
	$S_m = S_n \Rightarrow \frac{m}{2} \left[2a + (m-1)d \right] = \frac{n}{2} \left[2a + (n-1)d \right]$	sum of $(m + n)$ terms = 0
	$\Rightarrow 2a(m-n) + \{m(m-1) - n(n-1)\}d = 0$	
	$\Rightarrow 2a(m-n) + {(m^2 - n^2) - (m - n)}d = 0$	
	$\Rightarrow (m-n) [2a + (m+n-1)d] = 0$	
	$\Rightarrow 2a + (m + n - 1)d = 0$	
	Now $S_{m+n} = \frac{m+n}{2} [2a + (m+n-1)d] = \frac{m+n}{2} \times 0 = 0$	

Q.19 If x be the AM and y, z be two GM's between two positive numbers, then $\frac{y^3 + z^3}{xyz}$ is equal to-(A) 1 (B) 2 (C) 3 (D) 4

Sol. [B]

Proper Method	Short Trick
Let numbers are a & b	Let the G.P is 1, 2, 4, 8
$\therefore \mathbf{x} = \frac{\mathbf{a} + \mathbf{b}}{2}$	then $y = 2$, $z = 4$ and $x = \frac{9}{2}$
& \therefore a, y, z, b are in GP \therefore y ² = az & z ² = by	Now $\frac{y^3 + z^3}{xyz}$
Now, $\frac{y^3 + z^3}{xyz} = \frac{1}{x} \left(\frac{y^2}{z} + \frac{z^2}{y} \right) = \frac{1}{x} (a+b) = 2$	$= \frac{8+64}{(2)\left(\frac{9}{2}\right)(4)} = 2$

Q.20 Let the positive numbers a, b, c, d be in A.P. Then abc, abd, acd, bcd are-(A) Not in A.P./G.P./H.P. (B) in A.P. (C) in G.P. (D) in H.P.

Sol.	[D]	
	Proper Method	Short Trick
	a, b, c, d : AP	Let the A.P. is 1, 2, 3, 4,
	Dividing by abcd, we get	Now $abc = 6$, $abd = 8$,
	$\frac{1}{bcd}$, $\frac{1}{acd}$, $\frac{1}{abd}$, $\frac{1}{abc}$: AP	acd = 12, bcd = 24 are in H.P.
	∴ bcd, acd, abd, abc : HP	

Q.21 Let the sequence $a_1, a_2, a_3, \dots, a_n$ form an A.P., then $a_1^2 - a_2^2 + a_3^2 - a_4^2 + \dots + a_{2n-1}^2 - a_{2n}^2$ is equal to -

(A)
$$\frac{n}{2n-1}(a_1^2 - a_{2n}^2)$$
 (B) $\frac{2n}{n-1}(a_{2n}^2 - a_1^2)$ (C) $\frac{n}{n+1}(a_1^2 + a_{2n}^2)$ (D) None of these

[A]		
Proper Method	Short Trick	
Given $a_{1,a_{2},,a_{2n}}$: AP	Let $n = 2$	
$\therefore a_1^2 - a_2^2 + a_3^2 - a_4^2 + \dots + a_{2n-1}^2 - a_{2n}^2$	$a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4$	
$= (a_1 - a_2) (a_1 + a_2) + (a_3 - a_4) (a_3 + a_4) + \dots$	$a_1^2 - a_2^2 + a_3^2 - a_4^2$	
$+(a_{2n-1}+a_{2n})(a_{2n-1}-a_{2n})$	= 1 - 4 + 9 - 16 = -10	
But $a_1 - a_2 = a_3 - a_4 \dots = a_{2n-1} - a_{2n} = -d$	by option (A)	
$= -d[a_1 + a_2 + a_3 + a_4 \dots + a_{2n}]$	$\frac{n}{2n-1}(a_1^2-a_{2n}^2)$	
$= -d \cdot \frac{2n}{2} [a_1 + a_{2n}]$		
$= - nd (a_1 + a_{2n})$	$=\frac{2}{3}(1-16)=-10$	
But $a_{2n} = a_1 + (2n-1)d \Rightarrow d = \frac{a_{2n} - a_1}{2n-1}$		
$=\frac{-n(a_{2n}-a_1)}{2n-1}.(a_{2n}+a_1)$		
$=\frac{n}{2n-1}(a_1^2-a_{2n-1}^2)$		

Sol.

